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The �Michelson� Sivashinsky equation of premixed flames is studied in a rectangular domain in two dimen-
sions. A huge number of two-dimensional �2D� stationary solutions are trivially obtained by the addition of two
1D solutions. With Neumann boundary conditions, it is shown numerically that adding two stable 1D solutions
leads to a 2D stable solution. This type of solution is shown to play an important role in the dynamics of the
equation with additive noise.
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I. INTRODUCTION

The Sivashinsky equation �1� �or Michelson Sivashinsky
equation depending on the authors� is a nonlinear equation
which describes the time evolution of premixed flames. Be-
cause of the jump of temperature �and thus of density� across
the flame, a plane flame front is submitted to a hydrodynamic
instability called the Darrieus-Landau instability. The conser-
vation of normal mass flux and tangential velocity across the
front leads to a deflection of streamlines which is the main
cause of this instability. A more detailed description of this
instability can be found in the book of Williams �2� �see also,
in the approximation of potential flow in the burnt gases, the
elementary electrostatic explanation in �3�, where essentially
the flame is described as a surface with a uniform charge
density�. At small scales, the instability is damped by diffu-
sive effects: The local front propagation velocity is modified
by a term proportional to curvature; the coefficient ahead of
the curvature term is called the Markstein length. A geo-
metrical nonlinear term, which limits ultimately the growth
of the instability, is caused by the normal propagation of the
flame. The Sivashinsky equation, obtained as a development
in powers of a gas expansion parameter, i.e., for a small jump
of temperature, or equivalently for a flow almost potential in
the burnt gases, represents a balance between the evolution
due to these three effects, Darrieus Landau instability, stabi-
lization by curvature, and normal propagation of the flame.

The qualitative agreement between the Sivashinsky equa-
tion and direct numerical simulations, generally performed
with periodic boundary conditions, has been excellent even
with large gas expansion �4�, and also when gravity is in-
cluded �5�. It has been shown in a classic paper of the field
�6� �following �7�, where the pole decomposition was intro-
duced� that the 1D solution of the Sivashinsky equation in
the absence of noise was attracted for large times toward
stationary solutions, with poles aligned in the complex plane,
called coalescent solutions. It was shown analytically in �8,9�
that each solution, with a given number of poles, is linearly
stable in a given interval for the control parameter �either the
domain width or more often the Markstein length with a
domain width fixed to 2��.

In a recent paper �10� �hereafter called I� the present au-
thor has been interested in the behavior of the Sivashinsky

equation in 1D, but with Neumann boundary conditions
�zero slope at each end of the domain�, a situation which,
although more realistic than periodic boundary conditions,
had not attracted much interest over the years. Actually, pe-
riodic boundary conditions lead to a symmetry which is not
present in the case of a flame in a tube, i.e., every lateral
translation of a given solution is also a solution. Presented in
a different way, a perturbation on the flame can grow, reach
the cusp �the very curved part of the front, pointing toward
the burnt gases�, and then decay, but after having caused a
global translation of the original solution. This is not possible
with Neumann boundary conditions, but it was supposed that
this difference with periodic boundary conditions was unim-
portant. The surprise was however that stable stationary so-
lutions in the Neumann case involved a number of solutions
with two cusps �and the corresponding poles� at each end of
the domain, called bicoalescent solutions. This type of solu-
tion of the Sivashinsky equation was already introduced in
�11�, although this last article did not obtain those which are
stable with Neumann boundary conditions. The author would
like to mention here two articles which he did not cite in I,
namely �12�, where some bicoalescent solutions with Neu-
mann boundary conditions were first obtained, and �13�,
where bicoalescent solutions were obtained in direct numeri-
cal simulations. In this last paper, one solution was not com-
pletely stationary, because of the effect of noise, but another
solution was actually almost stationary. Of course the com-
puter time needed for such a simulation is probably one hun-
dred times more than the equivalent Sivashinsky equation
simulation, with all sorts of possible sources of noise, so
obtaining really stationary bicoalescent solutions in this case
is a challenging task.

Coming back to I, we can summarize the 1D results of
this paper in the following way:

�1� Bicoalescent solutions were obtained, stable with Neu-
mann boundary conditions. Simulations performed without
noise tend to these solutions.

�2� The new solutions led to a bifurcation diagram with a
large number of stationary solutions, where particularly the
number of solutions multiply when the Markstein length,
presented above, which controls the stabilizing influence of
the curvature term, decreases.

�3� The bicoalescent solutions play a major role in the
dynamics of the equation with additive noise. In the case of
moderate white noise, the dynamics is controlled by jumps
between different bicoalescent solutions.*Electronic address: bruno.denet@irphe.univ-mrs.fr

PHYSICAL REVIEW E 75, 046310 �2007�

1539-3755/2007/75�4�/046310�8� ©2007 The American Physical Society046310-1

http://dx.doi.org/10.1103/PhysRevE.75.046310


In the present paper, we shall be interested in the Sivash-
insky equation with Neumann boundary conditions, but in
two dimensions in a rectangular domain. Another nice prop-
erty of the equation �apart from the pole decomposition in
1D� is that 2D solutions can be formed by the simple addi-
tion of two 1D solutions, one for each coordinate �14�. The
exact counterpart of I will be obtained as follows:

�1� Sums of two bicoalescent solutions are stable in 2D
with Neumann boundary conditions. The time evolution of
the equation without noise tends toward these solutions.

�2� With sums of a large number of 1D solutions, a really
huge number of 2D solutions can be obtained.

�3� The sums of bicoalescent solutions also play a major
role in the dynamics in two dimensions in the presence of
noise.

II. SOLUTIONS IN ELONGATED DOMAINS

The Sivashinsky equation in one dimension can be written
as

�t +
1

2
�x

2 = ��xx + I��� , �1�

where ��x� is the vertical position of the front. The Landau
operator I��� corresponds to a multiplication by �k� in Fou-
rier space, where k is the wave vector, and physically to the
destabilizing influence of gas expansion on the flame front
�known as the Darrieus-Landau instability, and described in
the Introduction�. � is the only parameter of the equation �the
Markstein length� and controls the stabilizing influence of
curvature. The linear dispersion relation giving the growth
rate � versus the wave vector is, including the two effects,

� = �k� − �k2. �2�

As usual with Sivashinsky-type equations, the only non-
linear term added to the equation is 1

2�x
2. In the flame front

case, this term is purely geometrical: The flame propagates in
the direction of its normal, a projection on the vertical �y�
direction gives the factor cos���=1/�1+�x

2, where � is the
angle between the normal and the vertical direction, then a
development valid for small slopes of the front leads to the
term 1

2�x
2. The Sivashinsky equation is typically solved nu-

merically on �0,2�� with periodic boundary conditions. In I
it has also been solved on �0,2�� with only symmetric
modes, which corresponds to homogeneous Neumann
boundary conditions on �0,�� �zero slope on both ends of
the domain�. The two-dimensional version of the Sivashin-
sky equation is

�t +
1

2
����2 = ��� + I��� , �3�

where the Landau operator I��� corresponds now to a mul-
tiplication by �kx

2+ky
2 in Fourier space, kx and ky being the

wave vectors in the x and y directions. All dynamical calcu-
lations, are performed by Fourier pseudospectral methods
�i.e., the nonlinear term is calculated in physical space and
not by a convolution product in Fourier space�. The method

used is first order in time and semi-implicit �implicit on the
linear terms of the equation, explicit on 1

2�x
2�. No particular

treatment of aliasing errors is used. The 2D Sivashinsky
equation is solved in �0,2��� �0,2b� with only symmetric
modes, which corresponds to homogeneous Neumann
boundary conditions in the rectangular domain �0,��� �0,b�.

Pole solutions �6� of the 1D Sivashinsky equation are so-
lutions of the form

� = 2��
n=1

N �ln	sin
 x − zn�t�
2

�� + ln	sin
 x − zn
*�t�

2
�� ,

�4�

where N is the number of poles zn�t� in the complex plane.
Actually the poles appear in complex conjugate pairs, and
the asterisk in Eq. �4� denotes the complex conjugate. In all
of the paper, the number of poles will also mean the number
of poles with a positive imaginary part. The pole decompo-
sition transforms the solution of the Sivashinsky equation
into the solution of a dynamical system for the locations of
the poles. In the case of stationary solutions, the locations of
the poles are obtained by solving a nonlinear system:

− � �
l=1,l�n

2N

cot
 zn − zl

2
� − i sgn�Im�zn�� = 0, n = 1, . . . ,N ,

�5�

where Im�zn� denotes the imaginary part and sgn is the
signum function. This nonlinear system is solved by a variant
of the Newton method.

With a periodic boundary condition, the usual result is
that in the window 2n−1�1/��2n+1, n=1,2 , . . . there ex-
ists n different monocoalescent stationary solutions �all the
poles have the same real part�, with 1 to n poles, and the
solution with the maximum number of poles n is asymptoti-
cally stable. For a particular value of 1 /�, the number n���
such that 2n−1�1/��2n+1 is called the optimal number
of poles.

With Neumann boundary conditions, in each of the inter-
vals �2n−1,2n+1� of the parameter 1 /�, not only one as-
ymptotically stable solution, but n+1, of the form �l ,n− l�
with l=0,1 , . . . ,n where l poles coalesce at x=0 and l−n
coalesce at x=�, were obtained in I. �The bicoalescent type
of solutions have been recently introduced in �11��. In Fig. 1
is shown a bifurcation diagram with all the possible stable
stationary solutions �plotted only, contrary to I, in the domain
where they are stable� versus 1/�. What is actually plotted is
the amplitude �� �maximum minus minimum of �� versus
1/�. As can be seen, when the optimal number of poles
increases with 1/�, the number of stable stationary bicoales-
cent solutions is also increasing. The stability of these solu-
tions is not proved analytically, nor by a numerical study of
the linearized problem; we use only numerical simulations of
the Sivashinsky equation, with the different bicoalescent so-
lutions plus some small perturbations as initial conditions,
and the solution returns toward the unperturbed solution.
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In a square domain �0,2��� �0,2��, it has been remarked
in �14� that if �1�x� and �2�x� are solutions of the 1D Sivash-
insky equation �1�, then �1�x�+�2�y� �we use here �1 � �2

as a notation for this sum, whose amplitude is the sum of the
amplitudes of �1 and �2� is a solution of Eq. �3� in two
dimensions, and that the stationary solution obtained numeri-
cally in this case for periodic boundary conditions �15� is
simply a sum of two monocoalescent 1D solutions. Let us
note that, if it is absolutely obvious that sums are solutions of
the 2D equation, the stability of these solutions has never
been proved analytically, and can only be inferred from a
small number of numerical simulations.

In the case of rectangular domains �0,2��� �0,2b�, sums
are also solutions of the equation, with �2 now a solution of
the 1D Sivashinsky equation with parameter 1 /� in domain
�0,2b�, which can be obtained by an appropriate rescaling
from the solution in �0,2�� with parameter 1 /�1= �1/��
	�b /��.

A particularly simple case is the limit where b is very
small, where the only solution with parameter 1 /� in domain
�0,2b� is simply the flat �0� solution �2=0. As a sum of the
previously described bicoalescent solutions in �0,2�� added
to the flat solution in the other direction, we have simply a
way to observe the bicoalescent solutions in two dimensions.
We have observed numerically �not shown here, the behavior
is very similar to the 1D case� for Neumann boundary con-
ditions that these sums �l ,n− l� � �0� are stable. As an ex-
ample, for 1 /�=10 and b=� /10 we show in Fig. 2 a per-
spective view of the three different stationary bicoalescent
solutions �5,0� � �0�, �4,1� � �0�, and �3,2� � �0� �from top
to bottom�. In all the figures, the whole domain
�0,2��� �0,2b� is plotted; the solution with Neumann
boundary conditions corresponds only to one fourth of the
domain �0,��� �0,b�. We have found it clearer to show the
whole domain �contrary to I�, because some solutions are
very difficult to distinguish if plotted in �0,��� �0,b�. Al-
though these solutions are very sensitive to noise �although
less than the pure 1D solutions� it could be possible to ob-

serve in direct numerical simulations and experimentally the
solutions with the lower amplitude, which are the least sen-
sitive to noise. In experiments, the solutions should also sur-
vive heat losses �important in narrow channels� and not be
too much perturbed by gravity �i.e., have a large enough
Froude number� in order to be observed.

III. SOLUTIONS IN SQUARE DOMAINS

We now turn to stationary solutions in square domains
�0,2��� �0,2�� with Neumann boundary conditions. Sums
of bicoalescent solutions produce also in this case stable sta-
tionary solutions. The purpose of this section is to give de-
tails on the consequences of this simple addition property.
We show first the different types of solutions obtained by
addition of stable bicoalescent solutions in 1D. We insist on
the fact that these solutions are linearly stable and give a
specific example of the time evolution of one such solution
with some small perturbations. Finally two bifurcation dia-
grams are provided, one is the 2D equivalent of Fig. 1 with
the stable solutions plotted only in their stable domain. The
second contains all the solutions obtained by addition of all
the branches found in 1D in I and, as the reader will see, a
really huge number of branches are created in this way.

In Figs. 3 and 4 are shown the six stable solutions ob-
tained from the three 1D solutions of Fig. 2 for 1 /�=10. In
Fig. 3 can be seen �in perspective view, for the whole domain
�0,2��� �0,2���, from top to bottom the �5,0� � �5,0�,
�4,1� � �5,0�, and �3,2� � �5,0� solutions. In Fig. 4 can be
seen the three remaining solutions �4,1� � �4,1�, �3,2�
� �4,1�, and �3,2� � �3,2�. All these solutions are found to
be linearly stable, although all the solutions of Fig. 3
��5,0�� something� are extremely sensitive to noise. It must
be pointed out that most of these solutions would have been
almost impossible to find from a time integration of the 2D
Sivashinsky equation �Eq. �3�� because of this sensitivity to
noise, and it is likely that obtaining them from a steady ver-
sion of Eq. �3� would have been very difficult too.
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FIG. 1. Stable stationary solutions in 1D: Amplitude �� vs 1/�.
All the different branches are only plotted for the values of 1 /�
where they are stable. A notation like �3,2� means that 3 poles are
located at x=0 and 2 poles at x=�.

FIG. 2. Perspective view of the �from top to bottom� �5,0�
� �0�, �4,1� � �0�, and �3,2� � �0� stationary solutions for 1 /�=10
and b=� /10. The solution is plotted in the interval �0,2��� �0,2b�
because it is easier to visualize. Actually, Neumann boundary con-
ditions are satisfied in �0,��� �0,b� �one fourth of the domain
shown�.
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In Fig. 5, we have an example showing the stability of the
�3,2� � �4,1� solution. We start from this solution and add an
additive white noise to Eq. �3� when the time is below 0.5.
This white noise is Gaussian, of deviation one, and we mul-
tiply it by an amplitude a=0.001. It can be seen that after the
noise is stopped, the solution tends exponentially back to-
ward the �3,2� � �4,1� solution. Similar figures would be
obtained with the other solutions of Figs. 3 and 4, except that
higher amplitude solutions would need an even lower noise
in order not to jump immediately toward a lower amplitude
solution.

In Fig. 6 is shown the strict 2D equivalent of Fig. 1: The
bifurcation diagram showing the amplitude versus 1/� for all
the solutions which are linearly stable, only plotted in their
domain of stability. For 1 /�
3 there is only one possibility:
�1,0� � �1,0�. For 3
1/�
5 we have three branches �from
higher to lower amplitudes�: �2,0� � �2,0� �1,1� � �2,0�, and
�1,1� � �1,1�. For the value 1/�=10 we have the six solu-
tions of Figs. 3 and 4, that is from higher to lower amplitudes
the �5,0� � �5,0�, �4,1� � �5,0�, �3,2� � �5,0�, �4,1�
� �4,1�, �3,2� � �4,1�, and �3,2� � �3,2� solutions. Higher

values of 1 /� would correspond to an increasing number of
stable stationary solutions.

Naturally, neither Fig. 1 �in 1D� or Fig. 6 �in 2D� contain
all the possible stationary solutions. In 1D Guidi and Mar-
chetti �11� have introduced the concept of interpolating solu-
tions, which are unstable solutions connecting different
branches of stable solutions in the previous bifurcation dia-
grams. In I, the present author has shown that this leads to a
complex network of solutions, which was called a web of
stationary solutions. But now in two dimensions, we have the
possibility that, when two branches �1 and �2 exist for a
parameter 1 /� to create the 2D branch, �1 � �2. This con-
struction leads to a bifurcation diagram �with as before 1/�

14, i.e., not very large flames� with a truly huge number of
different stationary solutions �several thousands of
branches�. The comparison with Fig. 6 shows that most of
these solutions are linearly unstable.

The author would like to insist here on different points.
First, it is only possible to obtain such an incredible number
of stationary solutions because of two properties of the
Sivashinsky equation: The pole decomposition, which trans-
forms the search of stationary solutions in one dimension in
a 0D problem, and the possibility of adding 1D solutions in

FIG. 3. Perspective view of the �from top to bottom� �5,0�
� �5,0�, �5,0� � �4,1�, and �5,0� � �3,2� stationary solutions for
1 /�=10. The solution is plotted in the interval �0,2��� �0,2�� be-
cause it is easier to visualize. Actually, Neumann boundary condi-
tions are satisfied in �0,��� �0,�� �one fourth of the domain
shown�.

FIG. 4. Perspective view of the �from top to bottom� �4,1�
� �4,1�, �4,1� � �3,2�, and �3,2� � �3,2� stationary solutions for
1 /�=10. The solution is plotted in the interval �0,2��� �0,2�� be-
cause it is easier to visualize. Actually, Neumann boundary condi-
tions are satisfied in �0,��� �0,�� �one fourth of the domain
shown�.
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order to get 2D rectangular solutions of the Sivashinsky
equation. In the Kuramoto-Sivashinsky equation case �a non-
linear equation with a different growth rate but the same
nonlinear term� the pole decomposition is not available, but
nevertheless a lot of 1D stationary solutions have been ob-
tained �16�. The Kuramoto-Sivashinsky equation shares with
the Sivashinsky equation the possibility to create 2D solu-
tions by adding two 1D solutions, so actually in this case we
have also a very large number of branches. These rectangular
solutions are not as physically relevant in the Kuramoto-
Sivashinsky equation case. Contrary to the Sivashinsky
equation, where stable stationary solutions are basically as
large as possible and are thus rectangular in a rectangular
domain, it seems likely that in the Kuramoto-Sivashinsky
case, the most interesting solutions would have a hexagonal
symmetry �hexagonal cells are also observed for the Sivash-

insky equation with stabilizing gravity �17��. Stationary so-
lutions of the Sivashinsky equation with hexagonal symme-
try should exist too, and the author conjectures that the order
of magnitude of the number of solutions with hexagonal
symmetry should be approximately the same as those with
rectangular symmetry. Apparently there is no trivial way to
construct hexagonal solutions, so unfortunately, until some
progress is made, obtaining the hexagonal equivalent of Fig.
7 is almost impossible. We have here an example emphasiz-
ing the fact that as the smoothing effect �viscosity, curvature,
surface tension, etc.� decreases, we are not able to generate
correctly all the simple solutions of a given set of partial
differential equations �Sivashinsky and Kuramoto-
Sivashinsky equations, Navier Stokes, etc.� even with the aid
of computers.

IV. EVOLUTION WITH NOISE

In the previous section we have shown numerically that
the sums of linearly stable 1D bicoalescent solutions lead to
linearly stable 2D solutions. However, even a linearly stable
solution could have a very small basin of attraction. So, in
this section, we study the effect of noise on the solutions of
the Sivashinsky equation in a square domain, with Neumann
boundary conditions. The important solutions will be the so-
lutions that are reasonably resistant to the applied noise.

This noise used here is simply an additive noise, added to
the right-hand side of Eq. �3�. We choose the simplest pos-
sible noise, a white noise �in space and time�, which is
Gaussian, has deviation one, and is multiplied by an ampli-
tude a. But contrary to Fig. 5, this noise will be applied at
each time step. We use in all the simulations presented the
same parameter 1 /�=10; the stationary solutions corre-
sponding to this parameter have been presented in the previ-
ous section. We recall that in I, for the one-dimensional ver-
sion of the Sivashinsky equation with moderate noise, the
evolution was analyzed in terms of jumps between the avail-
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FIG. 5. Amplitude vs time for 1 /�=10, starting from a �4,1�
� �3,2� solution. A Gaussian white noise �amplitude a=0.001� is
imposed on this solution when time is smaller than 0.5. The solution
returns exponentially toward the initial solution.
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FIG. 6. Stable stationary solutions in 2D for a square domain:
Amplitude �� vs 1/�. All the different branches are only plotted
for the values of 1 /� where they are stable. The 2D linearly stable
solutions are obtained by addition of the corresponding 1D linearly
stable solutions of Fig. 1.
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FIG. 7. Stationary solutions in 2D for a square domain: Ampli-
tude �� vs 1/� �figure with all the solutions obtained by addition of
1D stationary solutions�. When two 1D branches found in I coexist
for a certain value of 1 /�, a 2D branch is created, whose amplitude
is the sum of the 1D amplitudes.
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able bicoalescent stationary solutions. We would like to show
here that in 2D, the sums of bicoalescent solutions also play
an important role in the dynamics.

In Fig. 8, starting from an initial condition which is the
�4,1� � �4,1� stationary solution, is plotted the amplitude of
the solution versus time, for a noise amplitude a=0.01, also
with straight lines corresponding to the amplitudes of the
lowest amplitude stationary solutions, i.e., those of Fig. 4.
The stationary solutions with higher amplitudes �those of
Fig. 3� apparently are too sensitive to noise to play any role
in the dynamics. It is seen in Fig. 8 that, because of the noise,
the solution departs quickly from the �4,1� � �4,1� solution
and that it seems that, during the time evolution, the solution
is close �apart from some violent peaks in the amplitude� to
the �3,2� � �4,1� solution for some time, then finally the
amplitude decreases again to be near that of the �3,2�
� �3,2� solution.

In order to prove that the solution is indeed close to the
previously mentioned solutions, because after all very differ-
ent solutions could have similar amplitudes, we plot in Fig.
9, for the same simulation, what we have called the distance
between the solution at a given time and the sums of bicoa-
lescent solutions, which is simply the L1 norm of the differ-
ence between both solutions. The spatial mean value of all
solutions is adjusted here to have the same value. Normally,
it is necessary to measure the distance between the solution
and all symmetries of a given sum of bicoalescent solutions
�i.e., you can interchange the poles at 0 and � in the x and y
directions� but, for the low amplitude a=0.01, it has not been
necessary and we plot only the distance from the relevant
solutions.

As we start from the �4,1� � �4,1� solution, the distance
to this solution is zero initially, and we can see that, although
the amplitude seems to indicate that at some time one is
again close to this solution, this is not the case. On the con-
trary, the solution returns regularly close to the �3,2�
� �4,1� solution for times lower than 110, then there is a
transition toward something close to the �3,2� � �3,2� solu-

tion, the solution departs slightly from this last solution for
some time, possibly toward a linearly unstable stationary so-
lution, and returns toward it at the end of the simulation. As
Fig. 6 remotely looks like energy levels in atomic physics,
one could be tempted to interpret the evolution of the two
previous figures with a small noise �apparently in 2D the
solution is less sensitive to a given amplitude of the white
noise compared to 1D simulations� as a sort of deexcitation
from the high amplitude level �4,1� � �4,1� toward first
�3,2� � �4,1�, then toward the fundamental level �3,2�
� �3,2�. Indeed, between the sums of bicoalescent solutions,
if all are linearly stable, the solutions with the lower ampli-
tude seem to be more resistant to the action of noise.

To better understand the effect of noise, we now present a
simulation with a larger noise amplitude a=0.1, ten times
larger than the previous case �we recall that this noise am-
plitude should be compared to the laminar flame velocity,
which is normalized to 1 in this paper�. In Fig. 10 is plotted
the amplitude versus time, with as before straight lines with
the amplitude of the important sums of bicoalescent solu-
tions. The initial condition is also the �4,1� � �4,1� solution.
Apparently this last solution is too sensitive to noise to play
a meaningful role in the dynamics, although it happens that
some peaks in the amplitude could involve solutions not too
far from this initial solution. As the distance to this solution
is never really small, even in the peaks, we shall not com-
ment further on this solution. On the other hand, it seems that
a lot of time is spent with an amplitude close to that of the
�3,2� � �3,2� solution �which we have called previously the
fundamental level�, and perhaps some time with an ampli-
tude close to the �3,2� � �4,1� solution �the first excited
level�.

In order to see what is really occurring, we now turn to
figures of the distance �defined above� to these two solutions
versus time �for the same simulation of Fig. 10�. However,
for a higher amplitude, we have to include the four different
symmetries of these solutions in the analysis �i.e., for in-

0 50 100 150 200 250
time

2

2.5

3

3.5

4

4.5

5
∆φ (4,1)⊕(4,1)

(3,2)⊕(4,1)

(3,2)⊕(3,2)

FIG. 8. Amplitude vs time for 1 /�=10 and a=0.01 �low noise
amplitude�. Deexcitation from the �4,1� � �4,1� solution toward the
�3,2� � �3,2� solution. This diagram suggests that the solution is
first close to the �3,2� � �4,1� solution, then from the �3,2�
� �3,2� solution, i.e., that the solution with the lowest amplitude is
the most noise resistant.
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FIG. 9. Distance to the main stationary solutions vs time for
1 /�=10 and a=0.01. A distance is a norm of the difference between
the solution at a given time and the stationary solution. This dia-
gram makes it possible to verify if a solution at a given time is
indeed close to a stationary solution.
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stance, �3,2� � �4,1�, �3,2� � �1,4�, �2,3� � �4,1�, and
�2,3� � �1,4��. In Fig. 11 is shown the distance to the four
symmetries of the �3,2� � �3,2� solution. The distance to one
of the four symmetries is indeed often small �but not very
small for this value of the noise� during the time evolution.
Then, because of the noise, perturbations are created that
lead the amplitude to increase as the perturbation is con-
vected toward one of the cusps, and the solution often comes
back toward another symmetry of the fundamental level.

In Fig. 12 is shown the distance to the four symmetries of
the �3,2� � �4,1� solution �the first excited level� �always for
the same simulation�. It is seen that the solution is only rea-
sonably close to this type of solution at times close to 50. At
other times, minima of the distance are not very small and
the solution is often closer to the �3,2� � �3,2� solution. In I,
we have presented the evolution of the 1D Sivashinsky equa-
tion with a moderate additive noise as a series of jumps
between bicoalescent solutions. In 2D the situation is rela-

tively similar, with the sums of bicoalescent solutions play-
ing the same role. However, the noise amplitude necessary to
cause jumps seems much higher in 2D and, practically
speaking, during the previous simulation, only the funda-
mental �the solution with the lowest amplitude� and first ex-
cited levels were obtained. It should also be noted that the
degenerescence �the four possible symmetries� of the funda-
mental level is probably important in the evolution �for in-
stance, for 1 /�=12 the fundamental level would be �3,3�
� �3,3�, which does not lead to other solutions by symmetry,
so that it should be less likely to obtain the fundamental level
in this case�.

Before closing this section, let us insist on the fact that, if
the solution regularly returns toward sums of bicoalescent
solutions, the fronts we obtain are not sums for each time.
Figure 13, where a front of the previous simulation for time
120.1 is plotted �just before a peak of the amplitude in Fig.
10�, should be a clear example of this property. In this figure,
the whole domain �0,2��� �0,2�� is plotted as before, but
this time as a gray scale figure, white corresponding to the
minimum of � and black to the maximum. Essentially, an
oblique perturbation has grown on a front that was previ-
ously a sum. This oblique perturbation moves toward each
corner of Fig. 13, and the amplitude peak corresponds to the
moment where the perturbation reaches the corner. Then the
solution is attracted again toward a sum of bicoalescent so-
lutions.

To summarize this section on the effect of noise, the fact
that all the sums of bicoalescent solutions with the optimal
number of poles are linearly stable does not prove that they
can be practically observed. On the contrary, the solutions
with the larger amplitude have a basin of attraction so small
that they can almost never be seen. We have introduced an
analogy with atomic physics by calling the bicoalescent so-
lution with the lowest amplitude the fundamental level and
other solutions the excited levels. In the examples shown,
only the fundamental and first excited levels �and their sym-
metries� were obtained during the time evolution of the
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FIG. 10. Amplitude vs time for 1 /�=10 and a=0.1 �moderate
noise amplitude�. This figure suggests that the solution is often
close to the �3,2� � �3,2� solution. It will be shown in the following
figures that it is close to the �3,2� � �4,1� solution only for times
around 50.
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FIG. 11. Distance to the different symmetries of the �3,2�
� �3,2� solution vs time for 1 /�=10 and a=0.1. The noise is suf-
ficiently large to induce transitions between the different symme-
tries of this fundamental level.
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FIG. 12. Distance to the different symmetries of the �3,2�
� �4,1� solution �first excited level� vs time for 1 /�=10 and a
=0.1. The solution is only close to one symmetry of the �3,2�
� �4,1� solution for times around 50 �after apparently a transition
from a �3,2� � �3,2� solution�.
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Sivashinsky equation excited by an additive noise. We recall
that, in I, it was shown in 1D that the evolution with noise
was completely different with periodic boundary conditions,
where only the largest amplitude monocoalescent solution
was linearly stable �even if extremely sensitive to noise�. In

this case, the solution regularly returns close to the highest
amplitude solution. With Neumann boundary conditions, this
is just the opposite; the solution prefers to be close to the
lowest amplitude, almost symmetric, sum of bicoalescent so-
lutions.

V. CONCLUSION

In this paper, we have used the possibility to create two-
dimensional rectangular stationary solutions from the addi-
tion of two 1D stationary solutions in order to generate a
huge number of stationary solutions of the Sivashinsky equa-
tion. With Neumann boundary conditions, the addition of
two stable 1D bicoalescent solutions leads to stable 2D so-
lutions, which also play a role in the dynamics when an
additive noise is added to the equation. However, with noise,
only the sums of bicoalescent solutions with the lowest am-
plitude �which are less sensitive to noise� have a reasonable
chance to be observed. More precisely, jumps between dif-
ferent symmetries of the lowest amplitude sum, or between
the two sums with the lower amplitude, are obtained in the
simulations. Although we have used a white noise in this
paper, experiments, submitted to a residual turbulence,
should behave in a similar way. In order to have a large
enough Froude number for gravity effects to be negligible,
flames with a sufficiently large laminar flame velocity would
have to be chosen.
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FIG. 13. Solution at time 120.1 for 1 /�=10 and a=0.1, plotted
as a gray scale figure �white: minimum of �; black: maximum of
��. The solution is plotted in the interval �0,2��� �0,2��. Presence
of an oblique perturbation which has grown on a sum of bicoales-
cent solutions. This perturbation will reach one corner in the figure,
be damped, and the solution will again be close to a sum of bicoa-
lescent solutions.
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